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5 Faculty of Geography, Moscow State University, Leninskie Gory St. 1, Moscow 119991,15

Russia16

6Faculty of Science and Environmental Studies, Department of Geography and17

Environment, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1,18

Canada19

7 Instituto de Geograf́ıa, Universidad Nacional Autónoma de México, Circuito Exterior,20
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Abstract22

The boreal forests of the Northern Hemisphere (i.e., covering the USA,

Canada and Russia) are the grandest carbon sinks of the world. A sig-

nificant increase in wildfires could cause disequilibrium in the Northern

boreal forest’s capacity as a carbon sink and cause significant impacts on

wildlife and people worldwide. That is why the ability to forecast wildfires

is essential in order to minimize all risks and vulnerabilities. We present a
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novel methodology utilizing the Bayesian Machine Learning models to iden-

tify climatic variations that induce high and low wildfire activity cycles and

forecast long-term occurrences of wildfires. The data analyzed are observed

records of wildfires, climate change and climate teleconnections, atmospheric,

oceanographic, and environmental factors, starting from the first half of the

20th century. Our Bayesian machine learning models show that a new phase

of high wildfire activity in the USA, Canada and Russia began in 2020. While

USA has a detectable, oscillation of 40 ± 5 years; Russia and Canada have

oscillatory patterns of 30±5 and 60±5 years, respectively. Also, our Machine

Learning model forecasts peak wildfire activity at around 2022± 3, 2035± 3,

and 2045 ± 5 years for USA, Russia, and Canada, respectively. The new

high wildfire activity phase will persist in Russia, USA, and Canada, until

2045, 2030, and 2055, respectively.

Keywords: Wildfires, Environmental Remote Sensing, Machine Learning23

1. Introduction24

Wildfire is a complex, multi-variable-controlled, emerging phenomenon25

with the known natural history recorded extending as far back as 450 mil-26

lion years ago (Scott, 2000; Bowman et al., 2009; Rimmer et al., 2015; Doerr27

and Santin, 2016; Pausas and Keeley, 2019; Zhang et al., 2020). With the ar-28

rival of human beings and associated agricultural practices and another large29

mammals, additional risk factors like land-use changes, landscape modifica-30

tions (e.g., through animal grazing), and ecological encroachments are all31
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coming into play both active and passive roles in wildfire occurrences and32

intensities (Marriner et al., 2019; Nanavati et al., 2019; Restaino et al., 2019;33

Rosan et al., 2019; Schreuder et al., 2019; Williams et al., 2019; Zubkova34

et al., 2019; Gaboriau et al., 2020).35

Both solar magnetic activity and orbital forcing controls on fire events36

have also been known to be a key factor (Hallett et al., 2003; Daniau et al.,37

2019; Hamilton et al., 2019; Kappenberg et al., 2019; Glover et al., 2020;38

Han et al., 2020). In addition, it is also relatively well accepted that abrupt39

external impact events from asteroids and meteors can be a significant trigger40

for extensive wildfire and biomass burning (Kennett et al., 2008; Wolbach41

et al., 2018; Melott and Thomas, 2019; Moore et al., 2019; Pino et al., 2019).42

The dynamics and variability of forest fires are related to global and re-43

gional climate changes, variations in the atmosphere-ocean circulation and44

transport modes, and external modulating factors. In addition, there are ge-45

ographical and ecological settings to consider. There is ongoing development46

and progress in the seasonal and annual prediction of global forest fire activ-47

ity (Turco et al., 2018; Shen et al., 2019). However, currently, these forecasts48

have not enabled the minimization of the ecological deterioration, human and49

economic losses in the Brazilian and American wildfires in 2019 and 2020,50

respectively. This is why the prediction of wildfires several years or even a51

decade ahead is necessary for the security of the Northern Hemisphere’s so-52

ciety and a significant scientific challenge. In order to prepare for the danger53

of wildfires each year, we need to plan and modernizing all environmental54
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contingency programs and early warning systems that will crucially depend55

on high-quality long-term predictions.56

The temperature has been considered one of the main factors in increasing57

wildfires (Williams et al., 2019; Fletcher et al., 2019). Nevertheless, recently58

it has been confirmed that the decrease in precipitation may be associated59

with the increase in forest fires (Williams et al., 2019). It is complicated to60

imagine that only one climatic variable can explain the wildfire variability;61

the dynamics and evolution of wildfires in each country within the Northern62

Hemisphere could involve factors of the atmosphere-ocean circulation and63

transport modes as external factors such as Total Solar Irradiance (TSI). All64

these co-factors intervene under different time scales, making the detection65

and quantification of their roles a significant challenge in the first step of66

data analyses.67

We have analyzed a set of observed records of wildfire, climatic and en-68

vironmental, and external solar activity parameters to study the nature of69

the underlying correlations among those variables that can shed light on70

the fuel-load-hydroclimatic-wildfire mechanisms covering the broad areas of71

Canada, the USA and Russia. Therefore, to improve our understanding of72

the complex factors that induce the variability of these wildfires, we have73

developed a novel algorithm through the powerful techniques drawn from74

“Machine Learning” as a new tool (Buduma and Locascio, 2017; Ham et al.,75

2019; Sejnowski, 2020), to understand the complex relationship between the76

land-atmosphere-ocean system and wildfires in the Northern Hemisphere,77
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which is ultimately essential to permit the prediction of long-term variability78

of wildfires.79

This study aims to identify climatic variations and ecological conditions80

that induce cycles (high and low activity) of forest fires in the Northern81

Hemisphere and develop long-term predictions of forest fires.82

2. Data and Methods83

A wildfire is a fire that spreads uncontrollably and spreads through a84

forest, rural or urban wilderness vegetation-affecting flora and fauna and85

wildlife and people-destroying property and deteriorating the environment.86

2.1. Satellite Wildfire Data for the Northern Hemisphere87

Due to the frequency and magnitude of forest fires in various88

regions of the world, the use of satellite images has contributed89

to the detection of hotspots, reducing the response time to the90

emergency while allowing the analysis of spatio-temporal dynamics91

of forest fires as a tool to establish the primary factors and elements92

associated with their occurrence. MODIS (Moderate Resolution93

Imaging Spectroradiometer) products are currently the most useful94

and important source of information for hotspot detection because95

of the advantages shown by this satellite product (Giglio et al.,96

2016, 2018; Fornacca et al., 2017). They are even used to forecast97

wildfire activity (Spessa et al., 2015; Ferreira et al., 2020).98
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The American, Canadian, and Russian land-surface hotspots99

were obtained from the MODIS Global Monthly Fire Location100

Product, MCD14ML (collection 6)1. This dataset from MODIS101

Fire SCF at the University of Maryland was selected because of the102

confidence it provides in the detection of hotspots (Giglio et al.,103

2016, 2018), since the algorithms and confidence tests used to es-104

tablish brightness temperature thresholds with the middle and105

thermal infrared channels and the spatial resolution used (1km)106

for detection, allowing users to eliminate erroneous pixels (For-107

nacca et al., 2017). In addition, this dataset provides information108

and monitoring day/night every minute. The dataset includes de-109

scriptive information for each point, such as geographical location,110

detection date, brightness temperature, radiative energy of the fire,111

type of inferred heat point (i.e., apparent biomass fire, active vol-112

cano, other static ground sources, offshore, and others) and level113

of trust/confidence.114

We used for the analysis all hotspot points detected from 01/11/2000115

to 30/06/2020 because the seasonality of wildfires in the United116

States, Canada and Russia occurs throughout the year. The data117

are downloaded in shapefile format for processing in a geographic118

information system (GIS). We eliminated those hotspots defined119

1https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/mcd14ml
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as static: volcanoes, industries, oil wells, and anthropogenic activ-120

ity in the USA, Canada, and Russia. Also, those detected with121

a confidence level of less than 75% we eliminated. Therefore, we122

strictly study satellite data related to wildfires.123

2.2. Historical Wildfire Data for the Northern Hemisphere124

We will analyze the historical data of the following countries in the North-125

ern Hemisphere, chosen for being the most important carbon sinks in the126

world: a) American wildfires (1926-2020)2, b) Canadian wildfires (1930-127

2020)3,4 and c) Russian wildfires (1950-2020)5,6.128

We would like to highlight that all the historical records of forest129

fires are incomplete, which have made their analysis uncertain.130

This is why we carry out a Bayesian analysis that allows us to find131

a model that describes the variations of forest fires in the USA,132

Canada and Russia probabilistically in order to account for the133

incompleteness of the available historical records.134

2.3. Climate Teleconnections135

The next set of annual time series we used is from the National Oceanic136

and Atmospheric Administration7: 1) Accumulated Cyclone Energy (ACE),137

2https://www.nifc.gov/
3https://cwfis.cfs.nrcan.gc.ca/ha/nfdb
4https://www.ccfm.org/
5http://rosleshoz.gov.ru/
6https://doi.org/10.1007/978-94-015-8737-2-8
7https://www.esrl.noaa.gov
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2) Arctic Oscillation (AO), 3) Atlantic Multidecadal Oscillation (AMO), 4)138

North Atlantic Oscillation (NAO), 5) Pacific Decadal Oscillation (PDO), 6)139

Palmer Drought Severity Index (PDSI). Also, we used 7) El Niño/Southern140

Oscillation (ENSO)8, 8) World temperature and precipitation data9, 9) Total141

Solar Irradiance (TSI)10.142

In order to weigh and inter-compare the variables analyzed in the study143

of Northern Hemisphere wildfires, we adopted the standardized annual data,144

i.e., with zero average value and unit standard deviation.145

2.4. Multiple-time-series Cross Wavelet Spectrum146

We have used MATLAB 2019b, the Wavelet Toolbox, the cross wavelet147

and wavelet coherence toolboxes for MATLAB by Grinsted, Moore and148

Jevrejeva (Grinsted et al., 2004), the Torrence & Compo Wavelet Analysis149

Software (Torrence and Compo, 1998) and our new Multiple Cross Wavelet150

alogrithms (Velasco Herrera et al., 2017; Soon et al., 2019). The main goal151

of our data analyses is to find the possible climatic patterns and factors re-152

sponsible for the underlying cycles in Northern Hemisphere wildfires. There153

are different methods to find patterns in time series. We use the wavelet154

analysis because this method allows identification of the intricate patterns155

of the phenomenon (such as wildfires) and the patterns of interaction with156

associated co-factors (Soon et al., 2019).157

8https://www.pnas.org/content/116/45/22512
9https://climateknowledgeportal.worldbank.org/

10https://doi.org/10.7910/DVN/SURA99
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Wavelet transform (see e.g., Grinsted et al., 2004; Torrence and Compo,158

1998; Velasco Herrera et al., 2017; Soon et al., 2019) can be considered as159

an intelligent system and is applied here to find patterns (periodicities), its160

evolution in the time, as well as to make predictions. Furthermore, it can161

also be used as an optimal filter.162

We applied our new Multiple-time-series Cross Wavelet spectrum (Ω⊗,163

Velasco Herrera et al., 2017) in order to identify climatic patterns and eco-164

logical conditions that induce high and low cycles in wildfire activity. Our165

Multiple-time-series Cross Wavelet spectrum (MCW) is based on the gen-166

eralized Einstein’s cross function (M) (Velasco Herrera et al., 2017). The167

relationship between M and Ω⊗ are the following:168

Ω⊗ = W[M] (1)

M = W−1[Ω⊗] (2)

where W and W−1 is the wavelet transform and inverse wavelet transform,169

respectively. The Ω⊗ spectrum is defined as the product (Track) of the170

diagonal elements in spectral wavelet hipermatrix (Ωtotal) and is given by171

the formula (Velasco Herrera et al., 2017):172
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Ω⊗ = Track

(
Ωtotal

)
=

i=n∏
i=1

Ωtotalii = 〈W11 ⊗W22 ⊗ . . .⊗Wnn〉[t,s] (3)

where.173

Ωtotal =



〈W11〉[t,s] 1 · · · 1

1 〈W22〉[t,s] · · · 1

...
...

. . .
...

1 1 · · · 〈Wnn〉[t,s]


and 〈◦〉[t,s] indicates for the wavelet spectrum smoothing in both time (t) and174

scale (s).175

So that the Ω⊗ spectrum (Equation 3) is different from zero is necessary176

that all time series have at least the same frequency. This implies a synchro-177

nization of the land-atmosphere-ocean system with the Northern Hemisphere178

wildfires at the same frequencies. In this way, the climatic patterns that in-179

duce high and low cycles in wildfire activity will be found.180

MCW has an intelligent algorithm to simultaneously analyze “N” vari-181

ables (N ≥ 2) and find the complex or linear relationships that exist between182

all the variables. We use the Morlet wavelet basis in the MCW because it183

has among the highest precision in resolving the periodicities that all “N”184

time series have in common and because it is a complex function that allows185
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us to obtain the information on phase as well, that is represented by arrows186

in the figures of the main text.187

The inputs in the MCW are the “N” time series and MCW has 4 outputs188

as shown in Figs. 3, 5, and 7 below: i) The global frequency spectrum (or189

time-averaged), which shows the periodicities (patterns) existing in all the190

“N” variables (left panel). ii) The local spectrum, that shows the evolution191

over time of these periodicities as well as their phase (center panel). iii)192

Global phase, shows the average phase of the “N” variables (right panel)193

and iv) Multi-cross function, amplitude and phase, of the dominant pattern194

(bottom panel).195

2.5. Machine Learning Algorithms for Probabilistic Forecasting196

of the Northern Hemisphere Wildfire Activity197

Historical wildfire data has uncertainty, so it is important to select a198

Machine Learning (ML) model that is able to adequately approximate the199

wildfire dataset with a high level of confidence. There are several ML algo-200

rithms, and we selected Bayesian inference machine learning for our purpose.201

Also, we will use the Bayesian inference ML model obtained from each of202

historical wildfires records as input to the Least Squares-Support Vector Ma-203

chines (LS-SVM, see Suykens et al., 2002) algorithms to obtain probabilistic204

models of forecasting Northern Hemisphere wildfire variability beginning in205

the year 2020 AD. Also, we note that any ML model is limited by an uncer-206

tainty principle.207
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Non-linear Autoregressive EXogenous (NARX) model208

In order to create forecasting models of wildfires activity, we use the209

Nonlinear Autoregressive EXogenous model (ŷ) that is defined as (Vapnik,210

1998; Suykens et al., 2002):211

ŷ[t+1] = f(y[t,p], u[t,q]) (4)

where f is a a non-linear transfer function that depends on the input (y)212

and output (u ) data, and p and q represent the number of lags of the input213

and output values, respectively. So, ŷ is the estimated wildfire time series at214

time “t+ 1”.215

Bayesian inference for LS-SVM regression216

To create probabilistic models of the wildfires activity, we use a Bayesian217

inference model obtained from the wildfire records for each country analyzed218

(USA, Canada, and Russia). Bayes’s theorem is the basis of these models219

and can be expressed as follows:220

Posterior(f |D) =
Likelihood(D|f)

Evidencep(D)
Priorp(f) (5)

where D is training data, in our case is the wildfire records and f is the221

Least-Squares Support-Vector Machines (LS-SVM) regression model:222
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f =
n∑

t=1

αtK(u, ut) + β (6)

where ut is the value of the Bayesian inference model of the wildfires at time223

“t” (discrete time index from t = 1, · · · , n), K is the kernel, α and β are224

hyperparameters. The output is the estimated value of ŷ.225

Bayes’s theorem is used to deduce the optimal hyperparameters of the226

LS-SVM model (see Suykens et al., 2002, for technical questions about the227

method).228

2.5.1. Algorithms for the estimation of wildfire cycles229

In order to forecast the next high wildfire season in the USA,230

Canada, and Russia, we apply the following iterative steps:231

I. Use multiple cross-wavelet transform (Equation 3) to find the232

periodicities on climate teleconnections and wildfires record233

for each country, i.e., USA, Canada, and Russia. The results234

are shown in Figures 3, 5, and 7.235

II. Use Equation (5) to obtain a Bayesian inference model from236

the time series of wildfires records (USA, Canada, and Russia)237

and shown as blue lines in Figures 4, 6 and 8.238

III. Selection of the model lags “p” and “q” for each Bayesian239

inference model that has been analysed (USA, Canada, and240

Russia).241
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IV. Use the K-fold cross-validation for the training, validation,242

testing and deduction of the parameters of the NARX model243

(Equation 6).244

V. Set aside 1/K of data. Train the model with the remaining245

(K-1)/K data. Measure the accuracy obtained on the 1/K246

data that we had set aside. K independent training is there-247

fore acquired. The final accuracy will be the average of the248

previous K accuracies. Note that we are “hiding” a 1/K part249

of the training set during each iteration. This is applied at250

the time of training. After these K iterations, we obtain K251

accuracies that should be “similar” to each other; this would252

be an indicator that the model is working well or not. In this253

work, we used K=10, but, is possible to vary K between 5254

and 10.255

VI. Use Bayes’s theorem to deduce the optimal hyperparameters256

(α and β) of the LS-SVM model (Equation 6).257

VII. Estimation of the following high and low wildfire activity cy-258

cles using Eq. (6).259

VIII. Computation of a cost function.260

IX. Test of the accuracy of the estimated wildfire activity cycles.261

X. Test of the cost function: if this function was small enough, we262

stopped and went to the next step (XI). Otherwise, we change263

one of the parameters and repeat from step (III) onwards.264
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XI. Use the wavelet transform to help determine if the periodic-265

ities of the estimated wildfire cycles have the same periodici-266

ties obtained in (I). If yes, then done and accept the estimate.267

Otherwise, repeat the estimate from step (III).268

We have used and modified the LS-SVM algorithms and toolbox269

by Suykens et al. (2002) to forecast the next high wildfire season in270

the USA, Canada, and Russia. The LS-SVMlab toolbox contains271

Matlab/C implementations for a number of LS-SVM algorithms by272

J.A.K. Suykens The LS-SVMlab software is made available for non-273

commercial research in https://www.esat.kuleuven.be/sista/lssvmlab/.274

3. Results275

3.1. Spatial Analyses of the Northern Hemisphere Wildfires276

Land cover information is integrated and processed with hotspot data277

in a geographic information system (GIS) to establish fire frequency and278

vulnerability percentages to determine the vegetation most vulnerable to279

forest fires in the regions of Canada, the United States, and Russia. The280

information generated is associated with the orography of the terrain, hence281

allowing us to obtain dominant altitudinal values. The results are shown in282

Figures 1 and 2.283

The hotspot data used (red dots in Figures 1a and 2a) are from the284

MODIS Collection 6 series: Temporal coverage is from 2000 to 2020 with285
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Figure 1: a) The North American land cover map superposed with the spatial distribution
of satellite wildfire hotspots data (red points) in USA and Canada from 2000 to 2019 is
shown. b) North American vegetation cover most affected by forest fires in the USA and
Canada: Cropland (yellow), 2) Shrubland (brown), 3) Tree cover, needle-leaved, evergreen
(green) and 4) Grassland (orange)
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a confidence level greater than 75%, eliminating information from active286

volcanoes and other static sources on land and offshore.287

The Land Cover (LC) information is obtained from the Climate Change288

Initiative (CCI) project of the European Space Agency (ESA). Global maps289

represent these geospatial data in raster format with a spatial resolution290

of 300 m, classified into 22 types of coverage and corresponding to the time291

interval from 1992 to 2018. The CCI-LC (ESA) data set is represented292

by global LC images with a spatial resolution of 300 m and an293

annual resolution from 1992-2020. The products provide 38 types294

of LC classified based on the typology established by the Food and295

Agriculture Organization of the United Nations (FAO)11. This Land296

Cover Classification System (LCCS) based on numerical codes was297

converted to LC information for the 2000-2020 periods and LC298

types for the United States, Canada and Russia. From the location299

of the wildfires, we got 22 types of LC (see Table B1).300

To determine altitudinal levels, topographic data from the Global Multi-301

resolution Terrain Elevation Data 2010 (GMTED2010) are used, with a res-302

olution of 7.5 arc seconds (225 meters). To quantify the impact of forest fires303

on the different land covers in the United States, Canada and Russia, the304

data between 2001 and 2018 are compared (see for example Liu et al.,305

2019).306

11https://www.esa-landcover-cci.org/
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The results show that in the Northern Hemisphere, the most significant307

impact due to the increase in forest fires is related to the vegetation category308

of tree cover, needle-leaved, evergreen land covers. Table 1 shows the main309

vegetation covers affected in the USA, Canada and Russia by the percentage310

of the total number of forest fires in 2001 and 2018.311

It should be noted that under the vegetation category of tree cover needle-312

leaved and evergreen in the USA, the percentage of the number of forest fires313

affected has increased from 37.2% in 2001 to 46.1% in 2018.314

In the 17 years interval, there is an increase of 8.9%. This contrasts315

sharply with a slight decrease or small increases in the fire-affected vegeta-316

tion types of Cropland, Shrubland and Grassland for the same period (see317

Table 1 for more details). For Canada, under the vegetation category of tree318

cover needle-leaved, and evergreen, the number affected by forest fires has319

increased from 31.3% in 2001 to 77.8% in 2018. Therefore, an increase of320

46.5% had been recorded for the same period of 17 years. At the same time,321

this substantial increase in wildfires affecting this vegetation cover can be322

contrasted with the decreases under the other three vegetation categories of323

tree cover-mixed-leaf type (broad-leaved and needle-leaved), Cropland and324

Shrubland (see Table 1). Finally, in Russia, the fire affected the vegetation325

type of tree cover, needle-leaved, evergreen has increased from 36.1% in 2001326

to 55.7% in 2018.327

This registers an increase of about 19.6%. While the fire-affected vegeta-328

tion types in Russia under cropland, grassland and tree cover, broad-leaved,329

18



deciduous covers decreased or slightly increased over the same 2001-2018330

interval (see Table 1).331

Table 1: Percentage of forest fires in the main land covers of the USA, Canada and Russia

Canadian vegetation cover most affected by wildfires 2001 2018
Cropland rainfed 31.5% 4.3%
Tree cover, needle-leaved, evergreen 31.3% 77.8%
Shrubland 9.4% 3.6%
Grassland 3.1% 1.2%

American vegetation cover most affected by wildfires 2001 2018
Tree cover, needle-leaved, evergreen 37.2% 46.1%
Shrubland 14.7% 15.3%
Cropland rainfed 14.4% 9.6%
Grassland 9.3% 9.3%

Russian vegetation cover most affected by wildfires 2001 2018
Tree cover, needle-leaved, evergreen 36.1% 55.7%
Cropland rainfed 28.4% 10.1%
Grassland 8.2% 6.6%
Tree cover, broad-leaved, deciduous 6.1% 9.3%

The satellite recorded values of the brightness temperatures (hotspots)332

will depend on the type of vegetation and trees, the humidity and water333

conditions of the vegetation-mass fuel and the number of burned trees during334

fires. The type of tree, in turn, also depends on climatic and geographical335

conditions. GIS information in Figures 1 and 2 shows that when analyzing336

the brightness temperatures of fires from 2000 to 2020, the difference of337

wildfires in the plains and the mountains is clear. The differences in the338

tundra and desert areas are also clearly distinguishable. Fig. 1b and 2b339
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Figure 2: The Northern Eurasia land cover map. a) The Northern Eurasia land cover map
superposed with the spatial distribution of satellite wildfire hotspots data (red points) in
Russia from 2000 to 2019 is shown. b) North Hemisphere vegetation cover most affected by
forest fires in the Russia: Cropland (yellow), 2) Tree cover, broad-leaved, deciduous (light
green), 3) Tree cover, needle-leaved, evergreen (strong green and 4) Grassland (orange)
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show the clusterings’ results, and we can classify four different land covers340

where more than 75% of forest fires occur in the USA, Canada and Russia.341

Every year wildfires, no matter the multivariate causative agents, indeed342

severely affect the human society and the environment in the Northern Hemi-343

sphere alike. Various public policies, ranging from active management pre-344

paredness to emergency responses, have been leveled to allow humanity and345

natural ecological environment to cope with the danger of fire. Therefore,346

any promise for a long-term prediction of wildfire occurrences is not only an347

urgent but also a powerful capability that can help to minimize the risks and348

vulnerabilities of Northern Hemisphere’s society from wildfires. In addition,349

the results of GIS illustrated here can help select specific forests/vegetations350

for monitoring climatic conditions, particularly rainfall and drought and soil351

moistures. Such kind of intelligent information gathering and processing will352

allow particular measures to minimize economic, human and ecological losses353

before a fire begins in any vulnerable areas.354

3.2. Tools for Understanding and Predicting Frequency of Wildfires in USA,355

Canada, and Russia356

The GIS clustering analysis shows the spatial variation of the Northern357

Hemisphere wildfires. In the spatial sense, each cluster obtained recognizes358

very well defined regions and delimited areas. This may allow one to opti-359

mally plan to minimize the risks and vulnerabilities of Northern Hemisphere360

society from wildfires by setting local and regional management priorities.361
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However, this complexity does not prevent or paralyze the narrower study of362

wildfire time-series statistics in each country’s analyzed (i.e., Canada, USA,363

and Russia). Using Machine Learning, we propose a new methodology to364

make long-term, several decades-long, forecasts for the wildfires in the USA,365

Canada and Russia.366

• American wildfires367

To begin studying the complex relationship between the forest fires of the368

Northern Hemisphere and the land-atmosphere-ocean system, we will analyze369

the American wildfires. In this first case, twelve variables are assessed (N=12)370

in the MCW, and these time series are shown in the top panel of the Figure371

3: 1) the number/frequency of American wildfires, 2) Burned Area, 3) PDSI,372

4) surface temperature, 5) precipitation, 6) snow cover, 7) AMO, 8) PDO,373

9) NAO, 10) ACE, 11) ENSO, and 12) TSI.374

The global time-averaged MCW shows two significant patterns (period-375

icities) at decadal-10 years and multi-decades 40±5 years, with more than376

95% confidence level (dotted red line, left panel) in American wildfires due377

to the combined modulation of the land-atmosphere-ocean system and the378

total solar irradiance (TSI). The decadal periodicity and its relative persis-379

tence are most likely related to the solar activity cycle and its teleconnections380

in climatic signals. The spectral power of this periodicity is present in the381

entire time interval (1926-2019), being more intense from1935 to 1955 and382

between 1975 to 1995. We further note that the maximum values in the383
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decadal spectral power are timed around the maximum of the multi-cross384

function of the multidecadal scale around 40 years (blue curve in the bottom385

panel). The local decadal and 40-year multidecadal phases do not show a386

well-defined orientation (that is, the arrows point in different directions), so387

the relationship between wildfires and the atmosphere-ocean system is com-388

plex. This fact can be reconfirmed through the behaviour of the global phase389

time-averaged result plotted in Figure 3 (black line, right panel).390

Despite the complexity of this system, the 40-year multi-cross function391

is theoretically in phase and in time equivalent of all climatic indices and392

American wildfires. This fact will allow the use of this function to extrapolate393

to future scenarios, make theoretical forecasts on the tendency of American394

wildfires, and then compare it with the predictions obtained with the Machine395

Learning method discussed below.396

We note that climatic oscillations with multi-decadal periodicities have397

been reported in many previous works (e.g. Soon, 2009; Soon et al., 2015;398

Le Mouël et al., 2019). The variations in the NAO, AMO and PDO have a399

strong impact on climate variability in sea-surface temperature, air tempera-400

tures, rainfall, precipitation, stream flow, and surface temperature anomalies401

of North America (e.g. Kitzberger et al., 2007; McCabe et al., 2008; McCabe-402

Glynn et al., 2013; Soon et al., 2015; Le Mouël et al., 2019).403

In particular, it is of great interest to know the influence of ENSO on404

annual and multi-year variations in wildfires statistics. We first note that the405

imprints of the El Niño phenomenon do not always show up in the increase406
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Figure 3: Time-frequency multi-cross wavelet from 1926 to 2019 between number of Amer-
ican wildfires, burned area, surface temperature, precipitation, snow cover, atmospheric-
oceanic circulation and energy indices PDSI, AMO, PDO, NAO, ACE, ENSO, and the
external solar forcing factor TSI. In the central panel, the calculated local wavelet power
spectral density (LWPSD) in arbitrary units is shown adopting the red-green-blue colour
scales. The black arrows indicate the relative phase of the synchronization. The orien-
tations from left to right (→) and from right to left (←) indicate that there is a linear,
in-phase or antiphase, synchronization at a certain frequency between all time series. Any
other orientation means that there is a complex, non-linear synchronization. The bottom
panel shows the multi-decadal cross function at the significant timescale of 44-years (blue
line) and the instantaneous phase relative for the same multi-decadal oscillation (black
line). The global time-averaged wavelet period is shown in the left-hand panel with the
red dashed line indicating the 95% confidence level drawn from a red noise spectrum. The
panel on the right shows the global time-averaged phase values.
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in the number of forest fires nor the increment in the burned area. The407

historical data of the American wildfires also show annual and multi-annual408

variations and the decadal and multidecadal signatures. MCW analysis does409

not show these periodicities suggests that these annual and multi-annual410

patterns have only local effects on the forested areas in America and that the411

seasonal atmosphere-ocean climate conditions may be more dominating.412

From the point of view of signal theory, the absence of annual and multi-413

annual variations means that they are considered as noise. Therefore, to414

predict forest fires, we should not focus on predicting these annual and inter-415

annual variations. In sharp contrast, the decadal and multidecadal periodic-416

ities result from the more persistent and coherent interactions of the coupled417

solar-land-atmosphere-ocean system. Because that is essentially a highly418

variable and stochastic process, it is impossible to say precisely the number419

of forest fires for the following years.420

The objective of using Bayesian Machine Learning models is to give an421

interval in which the number of wildfires can vary, with a high confidence422

level (> 95%). Also, we used the average value and the standard deviation of423

the historical data of American wildfires (which we called “objective data”)424

to quantify and define when there are high and low cycles of the frequency425

of American wildfires.426

To support our choice, we show a comparison (Fig. 4) between the ob-427

jective data (historical data of the American wildfires in black line) and the428

Bayesian Machine Learning model (blue line) from 1926 to 2020. This model429

25



represents the high and low-frequency fluctuations of American wildfires. It430

is observed that the objective data is indeed well distributed around the431

Bayesian Machine Learning model.432

With the support of the mean value (horizontal solid black line) and433

the standard deviations σ+ and σ− (a standard deviation above the mean434

value and a standard deviation below the mean value black dotted lines,435

respectively), we note that because the maximum values of the objective436

data (black line) are above the standard deviation σ+ from about 1930s-437

1950s and 1970s, these events can be classified as severe wildfire phase. The438

first minimum of this objective data occurs between 1950 and 1970, and it is439

around the average value so that this period can be classified as a moderate440

wildfire phase. While the second minimum is between 1985 and 2005, it is441

below and around the standard deviation σ−, so this period can be classified442

as a low wildfire interval.443

We note that the objective data is oscillating around the multidecadal444

Bayesian Machine Learning model (i.e., trend), which implies that the decadal445

variations are modulated by the tendency of American wildfires that were co-446

generated by the weather/climate/ecological conditions.447

There are several techniques to make time series predictions (Kubat,448

2015). Each of these methods have favorable aspects as well as their weak-449

nesses. Once we have obtained the Bayesian Machine Learning model that450

show the occurrence of high and low cycles in forest fires, it is now possible451

to select a Machine Learning algorithm to make a prediction of American452
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wildfires that is based on their decadal and multidecadal co-patterns.453

Before forecasting the number of wildfires for the following454

decades, it is necessary to quantify the ability of the Bayesian455

model to “predict” a variation in the recent and past wildfires. We456

use 80% of the Bayesian model (that is, data from 1926 to 2001)457

as input data to “forecast” the remaining 20% of the Bayesian458

model (i.e., 2002 to 2019). The Bayesian model of the historical459

data shows that all the annual historical data oscillate around the460

Bayesian model; this fact indicates no overtraining or undertrain-461

ing. Furthermore, the multiple cross wavelet analysis shows that462

the high and low seasons of forest fires have a multidecadal vari-463

ation, so the Bayesian model we deduced is not overly complex,464

which implies that the validation is simple. We do not show the465

validation figures but instead choose to concentrate on the fore-466

casting result.467

Based on the Bayesian model obtained from American wildfires, we have468

selected the Least Squares Support Vector Machines (LS-SVM) with the Non-469

linear Autoregressive Exogenous Model (NARX, see Vapnik, 1998; Suykens470

et al., 2002, for more details about method) to predict the next few cycles of471

American wildfires.472

We used the Bayesian model from 1926 to 2020 obtained by the objective473

data to train the LS-SVM. Once those trainings are completed, we obtain the474

prediction model that would show the probabilistic forecast of the activity of475
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Figure 4: Annual frequency of wildfires in USA from 1926 to 2019 (black line) compared
with the Model’s Machine Learning Bayesian inference (blue line). The horizontal solid
black and dashed black lines are the mean fire frequency and its one standard deviation re-
spectively, for the objective data from 1926-2019 interval. The blue shaded area represents
the 95% confidence intervals of the Bayesian ML model.

American forest fires between 2021 and 2030. The validity of the prediction476

model was assessed with K-fold cross-validation (in this work, we adopt477

K = 10). It was indeed necessary to evaluate how we would optimally478

combine the models obtained by the Bayesian Machine and the LS-SVM479

models. For that, it is necessary to look for a correction function in order to480

calibrate the predictions.481

There are different calibration methodologies, and we select a calibration482

that homogenizes and standardizes all measurements of the models obtained483

(see Soon et al., 2019, for more details). In addition, this methodology allows484

us to continue using the average value and standard deviations as a criterion485

to quantify the next cycle of forest fires. After calibrating the forecasting486

28



model, we again used Bayesian Machine Learning to obtain a probabilistic487

model of American wildfires.488

The results obtained from the Bayesian prediction model are shown to489

the right of the vertical blue line in Fig. 4. The blue shaded area represents490

the 95% confidence intervals of the Bayesian ML model. The results obtained491

from the prediction in Fig. 4 show that a new high cycle of forest fires has492

begun and could last for the next 4 to 7 years. In addition, this new cycle,493

by being in between the average value and the standard deviation σ+, can494

be classified as moderate to severe wildfire conditions.495

The fire will be probably manifest in all American wild forests, and other496

landscapes and the American burned areas could be well above those from497

the last 20 years. Such a future scenario could cause severe ecological, envi-498

ronmental damage with significant human and economic losses. But in the499

mean time, Fig. 4 predicts that around 2040, there will be a low cycle of500

forest fires in America comparable to those low fire regimes that occurred501

between 1980 and 2010.502

Once the model explaining intrinsic patterns, that is, multi-decadal oscil-503

lation of wildfires, have been obtained, it is now possible to explain the com-504

plex evolution of the historical number of forest fires from their interaction505

with climatic variations, ecological conditions, atmosphere-ocean circulation506

and transport modes as well as external factors such as solar TSI. The high507

cycles of American wildfires (1926 to 1955, 1970 to 1990 and likely 2019 to508

2030) is because of a prolific decrease during those years, well below its aver-509
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age value of precipitation, snow and ACE. This persistent condition causes510

a prolonged and severe drought. In addition to a positive phase of the PDO511

and the ENSO causes a warmer climate and dry air, therefore an increase in512

air temperature. Also, there is less cloudiness and lower atmospheric humid-513

ity that causes greater penetration of the solar radiation to the ground or514

near-surface. All these multiple co-factors cause a considerable accumulation515

of dry biomass fuels, and therefore both a combination of natural and human516

factors cause a large number of forest fires causing an extensive burned area517

of forests.518

Low wildfire cycles (1955-1975, 1990-2018) mainly were likely attributable519

to an increase in rainfall, snow and ACE well above its average value, as well520

as a negative phase of the PDO. All such conducive conditions cause a wetter521

climate. In addition, most of the dry biomass fuels were previously burned.522

During such periods, forests and ecosystems underwent a recovery and growth523

of vegetation and trees. Until a new high cycle of wildfires recommences.524

Concerning, the annual and multi-annual variations of ENSO and its525

effects on wildfires, it can now be explained that its effects contribute to526

the increase in the number of forest fires and to the increase in burned areas,527

when these variations occur at the maximum of the multi-decadal oscillation.528

During ENSO occurrence around the minimum phase of this oscillation, its529

effects are practically neutralized and absent.530

• Canadian wildfires531
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Figure 5: Time-frequency multi-cross wavelet from 1930 to 2019 between number of Cana-
dian wildfires, burned area, surface temperature, rainfall, snow cover, atmospheric-oceanic
circulation and energy indices AMO, PDO, NAO, ENSO, ACE, and the external solar forc-
ing factor TSI. The bottom panel shows the multi-decadal cross function at the significant
timescale of 60-years (blue line) and the instantaneous phase relative for the same multi-
decadal oscillation (black line). All other panels present similar information as described
in Fig. 3 but for the Canadian wildfire statistics.

Canada has also compiled an excellent historical record of wildfires (1930-532

2020), and we used a second MCW to find patterns in their wildfires caused by533

co-variations in AMO, NAO, PDO, ENSO, ACE, TSI, burned area, rainfall,534

snow cover and their surface temperatures. For this second case of wildfires,535

we have N = 11, and these time series were also standardized to be used536

in the input data in the MCW (top panel in Fig. 5). The global wavelet537

spectrum shows a decadal and a multidecadal pattern of 60±5 years again.538

The first pattern is slightly below the 95% confidence level, but the second539

multidecadal period is above.540

The local spectral power of the decadal pattern (center panel) is around541

the maximum of the 60-year multi-cross function (blue curve in the bottom542
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panel) and the phase for this decadal modulation does not have a definite543

tendency (the arrows are in all directions), so the relationship between Cana-544

dian wildfires, atmosphere-ocean system and decadal TSI is complex. While545

the 60-year multidecadal pattern phase has a quasi-perpendicular orientation546

over the entire time interval, its spectral power/signal is very high.547

The number of Canadian wildfires shows more significant inter-annual548

variability than American wildfires. That could be due to the relatively549

more extreme climatic conditions/oscillations to which Canadian forests and550

landscapes were subjected at higher latitudes. In addition, it is again ob-551

served that the co-factor El Nino influences the more excellent dispersions of552

the inter-annual data during the positive phase of the 60-year multidecadal553

oscillation.554

Fluctuations with an average period of 60 years are known in different555

hydrometeorological processes. This oscillation is reported in the processes556

of the ocean-atmosphere system and the variability of the surface air tem-557

perature. As well as in the dynamics of the sea ice area in the northern558

hemisphere (Leal-Silva and Velasco Herrera, 2012; Fedorov, 2018).559

The 60-year oscillation is most clearly manifested in the North Atlantic560

(Fedorov, 2018). It has been suggested that the Earth’s rotation is one of561

the modulating sources of different hydrometeorological processes and, in562

particular, in the 60-year periodicity. Nevertheless, there is a discrepancy if563

it is the ocean-atmosphere system or it is cosmic in nature (Soon et al., 2011,564

2014; Fedorov, 2018) and is plausibly related to the solar barycentric motion565
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(Cionco and Soon, 2015; Cionco and Pavlov, 2018) that cause the variations566

in the dynamics of the Earth’s rotation. However, there is still no consensus567

on the genesis of this periodicity.568

Additionally, the global wavelet spectrum indicates a relatively weak pe-569

riodicity of 40 years that is well below the 95% confidence level. This pattern570

is however manifested within the American wildfire statistics and could rep-571

resent a latitudinal relationship of the forests of Southern Canada with the572

forests of the Northern USA. In addition, clear inter-annual fluctuations are573

also absent in the MCW because they are patterns of each of the Canadian574

wildfire regimes/zones and not all of these regional wildfires are synchronized575

with the global circulation indices and TSI co-factor when wildfires occur.576

We use again the Bayesian Machine Learning to obtain model (blue solid577

curve in Fig. 6) that describe the variability of Canadian wildfires between578

1930 and 2020 (i.e, objective data), which are represented as a black line to579

the left of the vertical blue line of Fig. 6. It can be noted again that the580

historical annual-based data of these fires are well distributed around the581

Bayesian model. This model represents the multi-decadal frequency fluctua-582

tions of Canadian wildfires.583

Canadian wildfires show a very low activity season between 1930 and 1965584

(despite having very hot summers during the 1930s), below the standard585

deviation (lower horizontal blue dotted line in Fig. 6) of the entire record.586

During this period, a very high accumulation of ice has been reported in the587

Northern Hemisphere. This may have caused a very low cycle phase of the588
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Figure 6: Annual frequency of wildfires in Canada from 1930 to 2019 (black line) compared
with the Model’s Machine Learning Bayesian inference (blue line). The horizontal solid
black and dashed black lines are the mean fire frequency and its one standard deviation
interannual statistics, respectively, for the objective data from 1930-2019 interval. The
blue shaded area represents the 95% confidence intervals of the Bayesian ML model.

Canadian wildfires. In contrast, from 1970 to 1990, there was a very high589

season of wildfires with an extended duration above the standard deviation590

(upper horizontal blue dotted line in Fig. 6). During 2010 and until 2020,591

there is a very low season of Canadian wildfires since the values are generally592

below the standard deviation.593

For the prediction, we used a new LS-SVM and trained with the Bayesian594

model obtained from the objective data between 1930 and 2020. After cal-595

ibrating the forecasting model, we again used Bayesian Machine Learning596

to obtain a probabilistic model of Canadian wildfires. The prediction of597

the Canadian wildfire activity was validated again with the K-fold cross-598

validation (K = 10). It can be seen that the next maximum Canadian599
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wildfire obtained by the Bayesian method is timed around 2040, and it is600

predicted that it will be a severe cycle of Canadian wildfires with activity601

above the standard deviation of the wildfire statistics.602

From 2021-2022 onward, the number of fires will grow every year and603

most likely, after 2025, the number will be above the historical average value604

(middle, horizontal black solid line in Fig. 6), and this trend and tendency605

will continue until 2050, affecting all Canadian forests. Therefore, one can606

expect significant ecological and environmental deterioration in addition to607

great human and economic losses in Canada in the next three decades.608

The Bayesian multi-decadal model can explain the evolution of Canadian609

wildfires and the complex changes in the burned area. This power of expla-610

nation is especially relevant for the decrease of Canadian wildfires in the last611

two decades, which cannot be understood nor explained when the is strictly612

warming surface temperatures in Canada.613

From 1930 to 1965, there was a very low activity phase of Canadian614

wildfires and low burned area (negative phase of the 60-year cycle). During615

this period, one can speculate that the AMO’s positive phase causes more616

cloudiness, precipitation, and snow in Canada, so the vegetable fuel is wet,617

and the number of forest fires is low. It is during this negative phase that618

there were no reports of frequent wildfires nor any large, widespread wildfires,619

with one or two exceptions like the Chinchaga Firestorm of September 1950620

engulfing 1.4 million ha of boreal forests of the Northern Alberta and British621

Columbia.622

35



Then there is an increase in wildfires and the size of the burned area623

from 1965 to 1980 (positive and ascending phase of the 60-year oscillation).624

Thirdly, there is a stable high phase of both in the number of forest fires625

and in the area burned between 1980 and 1990. This stable interval takes626

place around the maximum of the 60-year cycle. After this decade of relative627

stability, a surprisingly decrease in wildfires and areas burned in Canada628

from 1990 till 2019 (descending phase and negative phase of the 60-year629

pattern). This overall positive phase of forest fires (1965-2000) coincides630

with the negative phase of the AMO, which causes less precipitation and631

snow, which is why fuel load has accumulated, and the number/frequency of632

forest fires is very high.633

Large Canadian wildfires (see, for example Stocks et al., 2002) are re-634

ported during the positive phase of the trend of these fires but then again635

decrease substantially, or there was no major fire catastrophe during the last636

negative phase of the 60-year oscillation from the 2000s till present. Our637

Bayesian ML model predicts that this low fire frequency phase will probably638

last until 2030 (which coincides with the current positive phase of the AMO)639

and then a new high season of forest fires will begin (which will most likely640

coincide with the negative phase of the AMO), and the highest number of641

forest fires will peak at around 2040 -2045.642

Also, even if the warm-dry hydroclimatic conditions for the 21st cen-643

tury might be conducive to increase fire frequency (Gaboriau et al., 2020).644

Nevertheless, this does not automatically mean a corresponding increase in645
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wildfires’ areal extent and intensity, especially if the more open landscape646

and particular vegetation type (i.e., conversion to more deciduous forests647

from coniferous type) prevail in Canada.648

• Russian wildfires649

The total area of forests in Russia is equivalent to 70% of the country’s650

total land area. The meteorological conditions conducive for wildfires in651

Russia are: a) winters with little snow, b) a long period without rain, c) a652

high air temperature, and d) a low relative humidity. All these conditions653

are necessary, but they are not sufficient. Because for the appearance and654

development of a fire, two additional conditions are needed, such as the655

accumulation of vegetation fuel load and the presence of a fire/triggering656

source.657

The main force of Russian forest fires is anthropogenic, and the second658

most important source is hydrometeorological and in the low latitude terri-659

tory of Russia, the anthropic factor causes 98% of fires, and in high latitudes,660

it is electrical storms that cause 50% of forest fires. However, in some regions661

of northern Russia, 90% of forest fires can be caused by electrical storms.662

For the third most important factor, the Russian wildfire patterns are663

caused by changes in the coupled atmosphere-ocean climate and weather664

system, and this aspect will be analyzed in this paper. In the case of Russia,665

the number of variables as input data for the MCW calculation is N = 10. The666

standardized time series, in addition to the number of yearly Russian forest667
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fires, are ENSO, PDO, AMO, NAO, ACE, TSI, burned area, precipitation668

and surface temperature (top panel in Fig. 7). The historical record of669

Russian wildfires began in 1948.670

The global time-averaged wavelet spectrum of the third MCW (left panel671

in Fig. 7) again shows both the decadal and new multi-decadal 30±5-year672

patterns. The first pattern is less than 95% of the confidence level and the673

second scale is more significant confidently established owing to the intrinsic674

shortness of the data records. The decadal and multi-decadal phase shows675

a complex nonlinear relationship among the total of ten variables studied.676

The multi-decadal cross-function of 30 years (blue curve in the bottom panel677

of Fig. 7) will be adopted to help offer a theoretical forecast for the next678

cycle of Russian wildfires, which will be compared with the Machine Learning679

predictive model. The global phase (right panel in Fig. 7) also reaffirms the680

complexity of the relationship between all ten co-variables.681

We note the absence of annual patterns again because these are local682

factors in different Russian landscapes and forests and that seasonal climatic683

conditions also modulate these. We further note that the ENSO multi-annual684

patterns are also absent. Everything indicates that the effects of ENSO on685

wildfires are ultimately manifested on a more extended duration timescale,686

i.e., decadal and multi-decadal that are more intrinsically tied to the fuel-load687

climatic-ecological-environmental conditions and fire interactions688

The modulation of ENSO by the TSI has been reported (Le Mouël et al.,689

2019; Weng, 2005; Douglass and Knox, 2015). Now, in addition to this690
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Figure 7: Time-frequency multi-cross wavelet from 1948 to 2019 between number of Rus-
sian wildfires, burned area, surface temperature, rainfall, snow cover, atmospheric-oceanic
circulation and energy indices AMO, PDO, NAO, ENSO, ACE, and the external solar forc-
ing factor TSI. The bottom panel shows the multi-decadal cross function at the significant
timescale of 35-years (blue line) and the instantaneous phase relative for the same multi-
decadal oscillation (black line). All other panels present similar information as described
in Fig. 3 but for the Russian wildfire statistics.

pattern, its multi-decadal pattern on atmospheric and oceanographic circu-691

lations must be taken into account in order to offer a prediction of Russian692

wildfires.693

We obtained a Bayesian Machine Learning (solid blue curve in Fig. 8)694

that describe the variability of Russian wildfires between 1948 and 2020 (i.e.,695

objective data), which are represented as a black line to the left of the vertical696

blue line of Fig. 8. It can be noted again that the historical annual-based data697

of these fires are well distributed around the Bayesian model. This model698

represents the multi-decadal frequency fluctuations of Russian wildfires.699

It should be noted that during 1948-1965, 1975-1990 and 2010 and pos-700

sibly until 2025, the precipitation in the Russian territory is well above its701
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Figure 8: Annual frequency of wildfires in Russia from 1948 to 2019 (black line) compared
with the Model’s Machine Learning Bayesian inference (blue line). The horizontal solid
black and dashed black lines are the mean fire frequency and its one standard deviation
interannual statistics, respectively, for the objective data from 1948-2019 interval. The
blue shaded area represents the 95% confidence intervals of the Bayesian ML model.

average value (hence an increase in fuel loads), and although El Nino events702

have been recorded, they have no clear and direct impacts on the increase703

in the number of fires or the increase in the burned area of Russian forests704

since the historical wildfire in Russia is at a minimum and are around σ−.705

Notably, the highs (lows) of Russian wildfire activity occur in the negative706

(positive) phase of the 30-year PDO oscillation when rainfall and snow were707

well below (above) its historical average.708
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4. Discussion709

Wildfires severely affect human society over the Northern Hemisphere,710

its safety, life, health, assets, economy, and properties, among other issues,711

every fire-active season without fail. They also affect the ecosystem and the712

environment. However, passive and emergency-based reactions and responses713

do not allow us to minimize the risks and vulnerability that Northern Hemi-714

sphere’s society has endured and continue to suffer from wildfires. This is715

why we initiated this new framework to offer quantitative analyses and po-716

tential predictability of wildfire statistics in the Northern Hemisphere that717

may promise an operational transition from a quasi-passive response system718

like the one currently available to a disaster prevention system that may of-719

fer multi-years to even decade-long future horizons. Such a framework has a720

close tie to and need for remote sensing monitoring of the environment, as721

outlined in the further discussion below.722

The fundamental difficulty of making any wildfire activity prediction for723

either near-term or long-term is the complex relationship between the vari-724

ability of wildfires and global and regional climate changes, variations in the725

atmosphere-ocean circulation and transport modes, and even uncontrollable726

external factors. In addition, there are geographical and ecological settings727

to consider. If that were not enough, significant difficulties are analyzing the728

multi-factorial nature of the underlying deterministic and noisy relationships729

between wildfires and all relevant causative factors, including even arsons.730

Faced with this complex situation and task, we show the powerful utility731
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of the new techniques from Artificial Intelligence’s Machine Learning. Ma-732

chine Learning is a potent tool in analysing historical wildfire and its long-733

term prediction, especially when the available recorded baseline data are not734

enormously large. We develop a new methodology using various machine-735

learning algorithms and techniques to find the climatic patterns and ecologic736

conditions that induce high and low cycles of wildfires in each country of737

the Northern Hemisphere analyzed in this paperwork (the USA, Canada and738

Russia). Based on these intricate patterns of wildfires, we then strive to739

predict wildfires in longer-term.740

Our newly developed methodology consists of differentiating from histor-741

ical wildfire data the useful signals (i.e., deterministic patterns) and noises742

(i.e., stochastic fluctuations) to get a maximum signal to noise ratio. Find743

the climatic patterns that induce forest fires high and low cycles for each744

country in the North Hemisphere.745

Once the patterns are identified, models to the average variability were746

trained, and these trained models can, in turn, explain more than 90% of the747

variations in the historical data. Trend models that can explain the complex748

variations in wildfires and the burned area were constructed. Subsequently,749

the models obtained are used to train the predictions of the following decadal750

or multidecadal cycles. We use MCW, Bayesian, and LS-SVM (i.e., described751

in the Method section below) in this process, but they can be replaced by752

any other algorithms of the user’s preference. We examine any alleged re-753

lationship of the wildfire activity with climatic variables (including not only754
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regional temperature and precipitation but also snow cover for the USA,755

Russia and Canada), several climatic circulations and moisture indices (i.e.,756

ENSO, PDO, NAO, AMO and even Accumulation Cyclone Energy, ACE, in-757

dices), and external nudging factors like the Sun’s irradiance activity cycles.758

Specifically, we studied all the underlying co-factors responsible for the759

wildfire occurrence statistics for the USA, Canada, and Russia to find the760

climatic patterns that induce high and low wildfire cycles. We found that var-761

ious combinations of local and regional climatic conditions, ocean-atmosphere762

circulation factors, and the external solar irradiance modulation factor can763

explain more than 90% of the wildfire frequency records.764

The results obtained with Machine Learning from the analysis of the765

historical wildfires show that the decadal oscillation is present in the wild-766

fires of all three Northern Hemisphere countries analyzed in this work. The767

difference is in the trend of these fires. While Canada has a multidecadal os-768

cillation pattern of 60±5 years, the USA and Russia have a 40±5 and 30±5769

years modulation pattern. There are evidence for a decadal-like modulation770

of the wildfire frequency statistics in all three rather disparate geographical771

regions and ecological regimes. We interpret this set of empirical evidence to772

propose a quasi-decadal modulation of the regional fuel-load, hydro-climatic773

and wildfire conditions by the 11-yr Total Solar Irradiance (TSI) cycles. The774

relationship senses that precipitation is high during the 11-yr TSI high phase,775

the temperature is relatively cool or mild. Also, biomass fuel load build up776

with low natural fire frequency and tendency until the low TSI phase sets777
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with dry and hot period with high fire frequency.778

Finally, we proffer the forecast of emerging wildfire activity, adopting both779

the decadal and multidecadal oscillations identified over the USA, Canada780

and Russia using the Machine Learning training method. The results show781

that a new high cycle of forest fires has begun in each Northern Hemisphere’s782

country (i.e., USA, Canada, and Russia) due to a combination of climatic783

variations (decadal and multidecadal) of the land-atmosphere- ocean system.784

The Bayesian probabilistic forecasts for the USA, Canada and Russia785

also show a new high season of wildfires. It allows us to understand and786

be prepared for the future condition of the vulnerability, risk and danger of787

the boreal forests of the Northern Hemisphere associated with the impacts788

of climate change as well as anthropic activity.789

In addition, these forecasts can be used to generate prevention actions in790

regions where the vegetation has shown greater vulnerability to forest fires.791

Evergreen and deciduous coniferous trees have been reported to be the most792

vulnerable cover to adverse atmospheric effects in the boreal areas of the793

Northern Hemisphere.794

From the analysis of satellite data, we find that forest, agricultural, grass-795

land, and scrub-type covers have the highest probability of ignition due to the796

frequency of fires associated with these land vegetation covers. Furthermore,797

the spread and permanence of fires during the months of July-December is798

associated with the accumulation and distribution of combustible materials799

in preceding events and with stressed vegetation due to the effect of climatic800
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variability and human activity. In addition, the percentage of wildfires has801

increased between 2001 and 2018 by 8.9%, 46.5%, and 19.6% in the USA,802

Canada and Russia, respectively, for the main fire-affected vegetation cate-803

gory of tree cover, needle-leaved, evergreen vegetation covers804

The increase in wildfires in non-forested vegetation cover is due to their805

greater capacity for ignition and fire propagation concerning boreal areas.806

In addition, its capacity for adaptation and resilience allows rapid regenera-807

tion and recovery, contributing to the accumulation of combustible materials808

mainly in transition zones (non-forested and forested land covers). These809

vegetation covers are located generally in lower elevation areas, where the810

frequency of fires is higher, limiting the forest regeneration process, con-811

tributing with new combustible materials and the colonization of vegetation812

vulnerable to the dominant climatic hazards for each study region.813

5. Conclusions814

The boreal forests of the USA, Canada and Russia are the most important815

carbon sinks. The percentage of wildfires affected vegetation category of816

the tree cover, needle-leaved, and evergreen vegetation cover has increased817

between 2001 and 2018 by 8.9%, 46.5%, and 19.6% in the USA, Canada and818

Russia, respectively. If the increase in wildfires continues in these countries,819

it could unbalance and overturn the Northern boreal forest’s capacity as a820

carbon sink. This is why any capability to forecast wildfires reliably will be821

significant to minimize the risks and vulnerabilities of boreal forests of the822
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Northern Hemisphere.823

We present a new methodology utilizing Machine Learning models with824

both purposes of developing models give insights into the complex relation-825

ship between the land-atmosphere-ocean system and Northern Hemisphere826

wildfires and the forecast of long-term wildfire. Our machine learning models827

show a new phase of high wildfire activity throughout the Northern Hemi-828

sphere has begun in 2020, created by decadal and multi-decadal variations829

of the coupled solar-land-atmosphere-ocean system.830

Our ML model forecasts peak wildfires at around 2022±3, 2035±3, 2045±5831

for the USA, Russia, and Canada, respectively. The new high wildfire activ-832

ity phase will persist in the USA, Russia, and Canada until 2030, 2045, and833

2055, respectively.834

The results also indicate that a decadal oscillation occurs in wildfires835

of all three North Hemisphere countries with different varying patterns in836

each country. While the USA have another intrinsic oscillation of 40±5837

years, Russia and Canada have oscillatory patterns of 30±5 and 60±5 years,838

respectively.839
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Appendix A. Land Cover Classification System864

Table A1: Classification of values from Land Cover Classification System (LCCS) to Land
Cover (LC)

LCCS codes Types of land covers

10 Cropland rainfed
20 Cropland irrigated or post-flooding
30 Mosaic cropland / natural vegetation (Tree, shrub, herbaceous cover)
40 Mosaic natural vegetation (Tree, shrub, herbaceous cover) / cropland
50 Tree cover, broadleaved, evergreen
60 Tree cover, broadleaved, deciduous, closed to open ( >15%)
70 Tree cover, needleleaved, evergreen, closed to open (>15%)
80 Tree cover, needleleaved, deciduous, closed to open (>15%)
90 Tree cover, mixed leaf type (broadleaved and needleleaved)

100 Mosaic T and shrub / herbaceous cover
110 Mosaic herbaceous cover / T and shrub
120 Shrubland
130 Grassland
140 Lichens and mosses
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
160 Tree cover, flooded, fresh or brakish water
170 Tree cover, flooded, saline water
180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water
190 Urban areas
200 Bare areas
210 Water bodies
220 Permanent snow and ice
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